

Activation Electrochimique

Niveau d'étude Bac +4 ECTS
3 crédits

Composante
Sciences Fondamentales
et Appliquées

Période de l'année **Semestre 8**

Présentation

Description

L'hydrogène est un vecteur énergétique dont la production peut se faire par des procédés décarbonés ou sobres en atome de carbone. Son utilisation dans une pile à combustible conduit à l'eau comme seul produit de réaction (càd sans émission de CO ni CO₂). Dans cette UE nous introduirons les notions électrochimiques, les études des interfaces « conducteur électronique/ conducteur ionique » qui permettent d'appréhender la **conversion directe** de l'énergie chimique en énergie électrique. A l'inverse et par souci d'économie d'énergie lors de la réaction d'électrolyse, la synthèse de matériaux d'électrode sous forme de nanoparticules sera particulièrement abordée.

Objectifs

- Comprendre les enjeux environnementaux d'économie d'énergie lors de la conversion et le stockage
- Comprendre la notion surtension et sa relation avec les réactions suivantes :
- La réduction de l'eau en hydrogène (Hydrogen Evolution Reaction HER)
- L'oxydation de l'hydrogène en eau (Hydrogen Oxidation Reaction HOR)
- La réduction de l'oxygène en eau (Oxygen Reduction Reaction ORR)
- L'oxydation de l'eau en oxygène (Oxygen Evolution Reaction OER)
- Déterminer les paramètres cinétiques à partir des courbes intensité-potentiel (voltammétrie cyclique, banc de pile à combustible/ électrolyseur, Equation de Levich, Equation de Cottrell)

Heures d'enseignement

TD	TD	8h
TP	TP	9h
СМ	СМ	12h

Pré-requis obligatoires

Licence de chimie ou diplôme équivalent dans ce domaine

Programme détaillé

- Protocoles de synthèse de nanomatériaux d'électrode
- Corrélation entre structure et réactivité du matériau d'électrode
- Spectroscopie d'impédance électrochimique
- Aspects cinétiques de la réaction électrochimique (Equation de Butler-Volmer ; équation de Koutecky-Levich, équation de Tafel)
- Piles à combustible de types « proton exchange membrane » PEM et « anion exchange membrane » AEM

Informations complémentaires

Les travaux pratiques proposés aux étudiants dans cette unité d'enseignement se réalisent avec du matériel de recherche essentiellement mis à disposition par le laboratoire IC2MP; cela permet de faire travailler les étudiants en binôme à des fins pédagogiques. Cependant et compte tenu du coût de ce matériel spécifique (Electrode à disque tournant, potentiostat, etc...), une séance de TP nécessite un groupe réduit : **12 étudiants Max** malgré la mise en place de TP tournants.

Compétences visées

Elaborer des nanomatériaux d'électrode

Mettre en œuvre une réaction électrochimique simple

Déterminer les paramètres cinétiques

Utiliser les outils actuels en électrochimie (Electrode à disque tournant, potentiostat, ...)

Infos pratiques

Lieu(x)

Poitiers-Campus