

Solid-state analyses / Analyses spécifiques des solides

Niveau d'étude Bac +5 ECTS 6 crédits Composante
Sciences Fondamentales
et Appliquées

Période de l'année **Semestre 9**

En bref

Langue(s) d'enseignement: Anglais, Français

Ouvert aux étudiants en échange: Oui

Référentiel ERASMUS: Chimie

Présentation

Description

Solid-state structural analyses techniques such as XPS, XRD, TEM, SEM, IR, Raman, NMR ...

Connaissances de techniques d'analyses structurales de solides telles que XPS, XRD, TEM, SEM, IR, Raman, RMN...

Objectifs

Widen and consolidate knowledge of techniques for structural analysis of solid-state materials: photonic and electron spectroscopy, electron microscopy and diffraction, vibrational spectroscopy, nuclear magnetic resonance.

Elargir et conforter les connaissances de techniques d'analyses structurales de l'état solide : spectroscopies photonique et électronique, microscopie électronique, diffractométrie, spectroscopie vibrationnelle et résonnance magnétique nucléaire.

Heures d'enseignement

TD	TD	28h
CM	CM	28h

Pré-requis obligatoires

Master 1 in chemistry or equivalent

Master 1 de Chimie ou équivalent

Programme détaillé

Study of the main techniques used to characterize a solid: XRD, TEM/SEM, XPS, IR and Raman spectroscopies and NMR

- The basis of solid-state NMR: principles, external and internal interactions (chemical shift, J coupling, dipolar coupling, quadrupolar interaction), relaxation.
- The main NMR techniques for acquiring 1D (Magic-Angle-Spinning, Cross-Polarization-Magic-Angle-Spinning) and 2D (Heteronuclear correlation, Multiple-Quantum Magic-Angle-Spinning) spectra
- Use of probe molecules for the study of surfaces using solid-state NMR
- Coupling of the hyperpolarization technique called dynamic nuclear polarization (DNP) and NMR spectroscopy for studying the surface of materials.
- · Applications to some materials of interest for catalysis
- Spectroscopies infrarouge (I.R.) et Raman : règles de sélection et théorie des groupes. Applications aux solides inorganiques. Spectroscopie I.R. et molécules sondes.
- Microscopie électronique (M.E.T. / M.E.B.) : théorie de l'image, franges de réseau, franges de Fresnel, structure fine de l'image. Indexation d'un cliché de diffraction électronique.
- Diffraction des rayons X de poudres (D.R.X.) : rappel de cristallographie géométrique, tables internationales de cristallographie (volume A, groupes d'espace), aspects instrumentaux, étude des diagrammes de diffraction, traitement des données enregistrées, détermination de structures cristallines.
- Spectrométrie photoélectronique X (X.P.S.) : principe de la photoémission, aspects quantitatifs et qualitatifs, détermination des environnements chimiques, exploitation des spectres XPS avec le logiciel CasaXPS, comparaison avec la bibliographie.
- Les bases de la RMN du solide : principe, interactions externes et internes (déplacement chimique, couplage J, couplage dipolaire, interaction quadripolaire), relaxation.
- * Les principales techniques RMN d'acquisition des spectres 1D (Magic-Angle-Spinning, Cross-Polarization-Magic-Angle-Spinning) et 2D (Heteronuclear correlation, Multiple-Quantum Magic-Angle-Spinning)
- * Utilisation de molécules sondes pour l'étude par RMN des surfaces.

- * Couplage de la technique de d'hyperpolarisation appelée polarisation nucléaire dynamique (DNP), et de la spectroscopie RMN pour l'étude de la surface des matériaux.
- * Applications à quelques matériaux d'intérêt pour la catalyse

Compétences visées

- Cibler la technique d'analyse à réaliser en fonction de l'information recherchée
- Savoir mobiliser ses connaissances et être capable de mener des analyses structurales poussées sur les solides.
- Savoir indexer un cliché de diffraction électronique.
- Savoir reconnaître les aberrations rencontrées en microscopie électronique.
- Savoir utiliser les pages des groupes d'espace présentées dans les tables internationales de cristallographie.
- Savoir appréhender l'influence de la variation des paramètres instrumentaux liés aux éléments techniques d'un diffractomètre de rayons X de poudres sur les résultats de mesures par goniométrie.
- Savoir calculer une composition atomique de surface par XPS.
- Être capable de décomposer un spectre XPS de base.
- Maîtriser l'utilisation du logiciel CasaXPS (Niveau Beginners).
- Être capable de reconnaître l'influence des facteurs responsables de la variation de la position et de l'intensité des réflexions constitutives d'un diagramme de diffraction.
- Maîtriser les composantes du profil de raies de diffraction par une structure périodique. Savoir utiliser les fonctions de formes de profil de raie comportant des contributions liées à l'instrumentation et celles liées à l'échantillon analysé.
- Maîtriser les étapes du traitement des données expérimentales obtenues diffractométrie de rayons X sur poudres.
- Etre capable d'exploiter un spectre RMN de noyaux ½ ou quadripolaires dans les matériaux à l'état solide
- Savoir extraire les principaux paramètres d'un spectre RMN pour la caractérisation de l'environnement local de différents éléments (noyaux) dans les solides
- Interpréter les résultats.

Infos pratiques

Lieu(x)

Poitiers-Campus