

Low or zero carbon energy/Energie bas carbone et énergie décarbonée

Niveau d'étude Bac +5 ECTS
3 crédits

Composante
Sciences Fondamentales
et Appliquées

Période de l'année **Semestre 9**

En bref

Langue(s) d'enseignement: Anglais

Ouvert aux étudiants en échange: Oui

Présentation

Description

The course will be delivered in English.

The course deals with the contribution of catalysis to the development of alternative processes for fuel and energy production.

Program overview:

- Electrocatalytic systems for energy
- Proton exchange membrane fuel cell (PEMFCs)
- Direct combustion fuel cell (DMFC, DEFC, etc.)
- Alkaline fuel cell (AFC)
- Production of hydrogen by electrolysis of biomass (alcohols, polyols, sugars) and water
- Production of hydrogen by biogas reforming (steam-reforming and dry reforming with CO2)

- Production of hydrogen ethanol reforming
- Presentation of the various biofuels (1st generation / 2nd generation / 3rd generation ones) Biogas production
- Capture, storage and valorization of molecules from polluting emissions
- Catalytic activation of greenhouse gas (CO2, CO, NOx, CH₄ ...)

Outcomes

- Know the clean electrical energy production systems and the operating principle of low temperature fuel cells
- Know the methods and operating principle of water electrolysis as well as biomass products reforming for the production of hydrogen
- Know the production method of biofuels and biogas
- Know how to activate greenhouse gas to reduce carbon footprint

Assessment methods

Written examinations.

Ce cours sera dispensé en langue anglaise.

Apport de la catalyse pour le développement d'une énergie à bas carbone ou décarbonée. Etude de l'activation catalytique des gaz à effet de serre pour réduire l'empreinte carbone.

Objectifs

- Connaître les systèmes propres de production d'énergie électrique et le principe de fonctionnement des piles à combustible basse température
- Connaître les méthodes et le principe de fonctionnement de l'électrolyse et du reformage pour la production d'hydrogène à partir de l'eau et de produits issus de la biomasse
- Connaître les filières et méthode de production des biocarburants et carburants de 2ème et 3^{ème} génération
- Connaître les filières et méthode de production des biogaz et leur valorisation
- Connaître les méthodes d'activation des gaz à effet de serre (CO2, CO, NOx, ...) en vue de leur valorisation

Heures d'enseignement

TD	TD	12h
CM	CM	16h
P-Proi	Pédagogie par projet	4h

Pré-requis obligatoires

UE chimie verte, électrochimie et catalyse hétérogène du M1 CVCE ou équivalent

Programme détaillé

- 1-Les systèmes électrocatalytiques pour l'énergie
- * Piles à combustible de type Proton exchange membrane Fuell Cell
- * Pile à combustion directe d'alcools (DMFC, DEFC, etc.)
- * Pile à membrane alkaline (SAMFC, DBFC)
- 2-Production d'hydrogène par électrolyse de la biomasse (alcools, polyols, sucres) ou de l'eau
- 3-Production d'hydrogène par reformage du biogaz (vaporéformage ou reformage à sec avec du CO₂)
- 4- Production d'hydrogène par reformage de l'éthanol
- 5- Les biocarburants: présentation des diverses filières 1 ère génération / 2 eme génération / 3 eme génération
- 5- Production de biogaz
- 6- Capture, stockage et valorisation de molécules issues des émissions polluantes
- 7- Présentation des procédés d'activation de petites molécules issues des gaz à effet de serre (CO₂, CO, NOx, ...) pour leur valorisation sous forme de méthane, méthanol, acide méthanoïque, ammoniac ...

Infos pratiques

Lieu(x)

Poitiers-Campus