

Géochronologie

Niveau d'étude Bac +2 Composante
Sciences Fondamentales
et Appliquées

Période de l'année **Semestre 3**

En bref

Langue(s) d'enseignement: Français

Ouvert aux étudiants en échange: Non

Référentiel ERASMUS: Sciences de la Terre

Présentation

Description

Principes et méthodes de datation par isotopie : Loi de décroissance radioactive, Fractionnement isotopique et Isochrones

Applications: Isotopes cosmogéniques (14C, 10Be, Tritium), Familles radioactives (U-Th), Argon, Isotopes stables (d2H, d18O), ...

Applications des méthodes : aux roches magmatiques et métamorphiques, aux réservoirs sédimentaires et aux eaux météoriques et souterraines

Objectifs

Comprendre et maîtriser les principes des méthodes de datation par isotopie

Appréhender l'origine et l'histoire d'objets géologiques par le biais des outils enseignés

Heures d'enseignement

CM	CM	4h
TD	TD	8h
TP	TP	8h
P-Proj	Pédagogie par projet	2h

Pré-requis obligatoires

Bases de chimie (équilibres, cinétique) et bases de géologie

Compétences visées

Savoir utiliser la loi de décroissance radioactive

Savoir tracer, utiliser et interpréter des diagrammes isochrones et isochrones inverses

Savoir utiliser des données isotopiques (rapports d'abondance, facteurs de fractionnement, ...) pour calculer l'âge d'un système donné

Savoir différencier les domaines d'application (nature des objets étudiés, période de formation, ...) associés aux méthodes enseignées

Appliquer les méthodes adaptées aux problématiques de datation posées

Infos pratiques

Lieu(x)

Poitiers-Campus