

# Métrologie optique

ECTS
3 crédits

Composante
Sciences Fondamentales
et Appliquées

Période de l'année Semestre 9

#### En bref

# Méthodes d'enseignement: En présence

# Ouvert aux étudiants en échange: Non

#### Présentation

#### Description

Il s'agit de faire découvrir les techniques optiques de mesures sans contact en mécanique des solides. On aborde les méthodes classiques de moiré, de projection, de corrélation d'images, de suivi de marqueurs, de photoélasticmétrie, mais aussi les techniques de bases de l'analyse d'images e tde la transformation de Fourier discrète.

#### **Objectifs**

Ce cours a pour but d'approfondir les connaissances sur les techniques de mesures de champ en mécanique. Ces méthodes sont basées sur l'analyse dimages et ont pour but d'en extraire les informations mécaniques. Ces images peuvent être obtenues à partir des phénomènes d'optique géométrique ou physique. Ces techniques conduisent à la détermination des déplacements, des déformations, des contraintes, soit ponctuellement, soit sur tout un champ.

C/TD : Pour les méthodes de mesure de champ les plus répendues, l'enseignement s'articulera autour de la présentation de la méthode, les développements mathématiques nécessaires à son utilisation, les cas partiques et industriels d'utilisation et les performances métrologiques.

TP : Mise en œuvre de 4 méthodes de mesure différentes sur des cas concrêts



#### Heures d'enseignement

| TD | TD | 8h  |  |
|----|----|-----|--|
| TP | TP | 8h  |  |
| CM | CM | 10h |  |

### Pré-requis obligatoires

aucun, cependant il est préférable d'avoir suivi le module de M1 : couplage expérimentation/Modélisation

## Programme détaillé

En première partie : Analyse et Traitement d'images

- généralités sur une image discrète
- filtrages passe-bas et passe-haut
- transformée de Fourier discrète TFD (ou FFT)

En seconde partie : Photomécanique

- mesures par les techniques de moiré (déplacement plan, hors plan, relief et forme)
- mesures des champs de déplacements ou de déformations (corrélation d'images, suivi de marqueurs)
- mesures des déplacements par techniques interférométriques
- étude de la répartition des contraintes par photoélasticimétrie

#### Compétences visées

Connaitre les méthodes existantes de mesure de champ et leurs domaines d'application Choisir la méthode la mieux adaptée à un problème mécanique donné Adapter une méthode existante à un problème mécanique Evaluer les performances métrologiques

#### Liste des enseignements

|                                  | Nature | CM  | TD | TP | Crédits |
|----------------------------------|--------|-----|----|----|---------|
| Métrologie optique               | EC     | 10h | 8h |    |         |
| Métrologie optique - Application | EC     |     |    | 8h |         |

UE = Unité d'enseignement

EC = Élément Constitutif