

R3.08 Electronique

Composante Institut universitaire de technologie d'Angoulême

Présentation

Description

À l'issue de cette ressource, l'étudiant doit être capable de :

- Identifier les contraintes et caractéristiques d'un système embarqué ;
- Définir les paramètres pour l'acquisition et la restitution d'un signal ;
- Mettre en œuvre une chaîne élémentaire de traitement du signal ;
- Mettre en œuvre des interfaces de signaux ;
- Mettre en œuvre un banc de mesures, de contrôle et de tests ;
- Vérifier tout ou partie d'un système par l'utilisation d'outil de simulation.

Heures d'enseignement

CM	CM	1,5h
TD	TD	3h
TP	TP	9h

Programme détaillé

Note : la mise en œuvre des TP pourra se faire à l'aide d'outils logiciels d'instrumentation (Par exemple : Labview, MatlabSimulink, Scilab, Octave...) ou de systèmes embarqués (microcontrôleur, FPGA...).

Les thèmes recommandés à développer pour atteindre les acquis d'apprentissage visés sont :

- Numérisation du signal analogique et restitution :
- Architecture générale d'un système de traitement numérique du signal : conditionneur de signal d'entrée, filtre antirepliement (rôle et fc), CAN/CNA, filtre de lissage (rôle et fc), amplificateur de sortie ;
- Signaux échantillonnés et numériques (échantillonnage, quantification, codage), classification de signaux, expression et représentation temporelle des signaux numériques, échantillonneur bloqueur ;
- Caractéristiques principales des CAN et CNA usuels (Pipeline, SAR, Sigma-delta) : résolution, gamme d'entrée,

quantum, bruit de quantification, vitesse, polarité, linéarité, format des données ;

- Théorème d'échantillonnage, spectre des signaux échantillonnés (repliement spectral, fenêtrage temporel, fenêtres de pondération) ;
- Mise en œuvre d'une chaîne d'acquisition et de restitution.
- Interfaçage, adaptation et traitement analogique de signaux :
- Amplificateur d'instrumentation (notions de mode commun et d'amplificateur différentiel, PGIA) ;
- Isolation galvanique : optique (optocoupleur), inductif, capacitif;
- Adaptateur de niveau de tension (analogique et logique) ;
- Convertisseurs de signaux (courant/tension, fréquence/tension, PWM/tension...).

Compétences visées

- Assurer le maintien en condition opérationnelle d'un système
- Implanter un système matériel ou logiciel
- Concevoir la partie GEII d'un système
- Vérifier la partie GEII d'un système

Liste des enseignements

	Nature	CM	TD	TP	Crédits
R3.08 Electronique - CM/TD	UE	1,5h	3h		
R3.08 Electronique - TP	UE			9h	

UE = Unité d'enseignement

EC = Élément Constitutif