

Physique de la déformation - IMHP2D

ECTS 6 crédits Composante
Sciences Fondamentales et Appliquées

Présentation

Description

Plasticité:

- Déformation induite par le mouvement des dislocations.
- Interaction dislocation-réseau cristallin (mécanisme de Peierls).
- Interaction dislocation-dislocation (modèle de la forêt).
- Interaction dislocation-défauts ponctuels (solution solide, effet Portevin- Le Chatelier).
- Interaction dislocation-précipités (cisaillement/contournement).
- Mécanismes de restauration (montée et glissement dévié).

Microscopie à Force Atomique (AFM) - Nanoindentation:

La Microscopie à Force Atomique permet d'observer les surfaces à des échelles allant de la centaine de microns jusqu'à l'échelle atomique tout en apportant une information quantitative sur les hauteurs. Cette première partie se décompose ainsi:

- principes généraux de la microscopie en champ proche (SPM),
- microscopie à force atomique (AFM) en mode contact,
- microscopie à force atomique (AFM) en mode dynamique,
- pointes et piezos.

La nanoindentation est une technique récente de caractérisation locale des propriétés mécaniques de surface (dureté, module). Les enseignements se décomposent ainsi:

- principe de l'indentation instrumentée,
- théorie du contact élastique et analyse des courbes d'indentation,
- instrumentation.
- au-delà de la mesure de dureté.

Nouveaux alliages: Mise en œuvre et propriétés des aciers de dernière génération pour l'automobile (dont TRIP, TWIP) et des superalliages à base nickel pour les turbo-réacteurs.

Objectifs

Plasticité: présenter la déformation plastique des matériaux cristallins dans une approche des mécanismes élémentaires de mouvements de dislocations.

Microscopie à Force Atomique (AFM) - Nanoindentation: Présentation des techniques de microscopie à force atomique (AFM) et de nanoindentation avec exemples d'applications

Nouveaux alliages: Compréhension des relations procédés-microstructures-propriétés qui ont permis au cours des dernières décennies de développer des nouveaux alliages pour les applications de transport (nouveaux aciers pour l'automobile et superalliages pour l'aéronautique).

Heures d'enseignement

CM	CM	27h
P-CI-CM	Classe inversée - CM	3h
P-CI-TD	Classe Inversée - TD	3h
P-Ci-Etu	Classe Inversée - Autonomie	3h

Liste des enseignements

	Nature	CM	TD	TP	Crédits
Plasticité	EC	16h			
AFM - Nanoindentation	EC	11h			
Nouveaux Alliages	EC	10h			

UE = Unité d'enseignement EC = Élément Constitutif

Infos pratiques

Lieu(x)

Futuroscope