

Algorithmique 3D II - EUR

ECTS 5 crédits Composante
Sciences Fondamentales et Appliquées

Présentation

Description

L'enseignement aborde les thèmes avancés de l'informatique graphique, comme la modélisation topologique, la géométrie discrète, le rendu réaliste, l'animation à base physique, les environnements interactifs (réalité virtuelle).

Le module s'appuie en particulier sur la conception et la réalisation de développements informatiques, qui peuvent revêtir des formes différentes : réalisation d'une application à base de bibliothèques graphiques très répandues, étude d'un article scientifique et implantation de la méthode décrite, etc.

A titre d'exemple, voici quelques sujets possibles : réalisation complète d'un jeu à base de bibliothèques de rendu et/ou d'animation, conception et validation de modèles pour l'impression 3D, moteur de construction et affichage d'objets discrets, écriture d'un moteur de rendu réaliste et/ou interactif, conception d'environnements interactifs animés par les lois de la mécanique, programmation d'applications en réalité virtuelle, etc.

Objectifs

Le but de cette UE est de développer les compétences de l'étudiant en synthèse d'images 3D, et de les mettre en oeuvre dans diverses réalisations.

Heures d'enseignement

 CM
 CM
 8h

 TP
 TP
 22h

 P-Proj
 Pédagogie par projet
 20h

Pré-requis obligatoires

Compétences en synthèse d'image 3D (modélisation & rendu) par exemple via le Module d'algorithmique 3D de M1

Compétences visées

Les compétences développées dans ce module dépendent des types de projets effectués :

- Modéliser la forme d'objets virtuelles en utilisant des modèles de courbes et surfaces avancés
- Caractériser les propriétés topologiques des modèles créés et contrôler leur évolution lors des opérations de modélisation
- Convertir un objet en éléments discrets en garantissant les propriétés de connexité entre ces éléments
- Animer de façon réaliste des objets en accord avec les lois de la mécanique
- Détecter et gérer la collision entre objets lors d'une animation
- Sélectionner et utiliser des modèles physiques d'illumination pour modéliser l'interaction lumière/matière
- Utiliser un moteur de rendu pour développer une application de navigation temps-réel
- Développer un moteur de rendu
- Concevoir/utiliser des structures accélératrices pour les applications interactives temps-réel

Liste des enseignements

	Nature	CM	TD	TP	Crédits
EC Algorithmique 3D 2	EC	8h		22h	

UE = Unité d'enseignement

EC = Élément Constitutif