

Cristallochimie

Niveau d'étude Bac +3 ECTS 6 crédits

Composante
Sciences Fondamentales
et Appliquées

Période de l'année **Semestre 5**

En bref

Langue(s) d'enseignement: Français

Méthodes d'enseignement: En présence

Ouvert aux étudiants en échange: Oui

Référentiel ERASMUS: Sciences de la Terre

Présentation

Description

L'identification des minéraux constituant les roches ou géomatériaux et de leur transformation représente l'étape initiale de nombreuses études à finalité aussi bien industrielle que de recherche académique. En complément des compétences déjà acquises en pétrographie, ce module a pour but de consolider les bases de cristallographie pour ensuite permettre l'identification critique des minéraux par leur composition chimique et la diffraction des rayons X (DRX), à savoir les techniques les plus utilisées. L'approche quantitative de la DRX se généralisant en géosciences actuellement, les étudiants y seront sensibilisés dans un dernier temps afin de les préparer à la mutation des exigences du milieu professionnel. Une sensibilisation sera également donnée quant à la stabilité d'une phase minérale en contact avec un fluide géologique (approche expérimentale et prédiction thermodynamique).

Objectifs

Comprendre les processus physiques essentiels mis en jeu en DRX afin de développer un esprit critique sur les conditions d'acquisition et les données obtenues ; identifier les minéraux constituants des roches ou géomatériaux par leur composition chimique et la DRX ; comprendre des ouvrages de minéralogie/cristallographie ou des fiches cristallographiques afin de pouvoir adapter son expertise à chaque cas d'étude ; acquérir les premières bases des approches quantitatives en DRX ; combiner ces techniques avec la pétrographie afin d'étudier des systèmes géologiques simples autour de problématiques énergétique ou

environnementale; caractériser et prédire pour un cas simple la stabilité d'une phase minéralogique en contact avec un fluide géologique ainsi que la composition d'un fluide en équilibre avec une roche.

Heures d'enseignement

TD	TD	8h
TP	TP	10h
CM	CM	22h
P-Proj	Pédagogie par projet	4h

Pré-requis obligatoires

Niveaux terminale scientifique en mathématique et physique

Programme détaillé

- Comportement géochimique des éléments : CM (classifications géochimiques, règles de substitution, rôle des fluides lors des interactions eaux/roches) et TP (caractérisation du système eau/calcite/CO2; dissolution/précipitation silice amorphe)
- Cristallographie (réseaux cristallins et sites cristallographiques) : CM et TD
- Initiation à la diffraction des rayons X et des électrons (approches qualitative et quantitative) : CM et TD/TP (présentation du diffractomètre, préparation des échantillons, acquisition, identification des minéraux sur les diffractogrammes, calcul d'un diffractogramme théorique)
- Minéralogie des phyllosilicates (minéraux important dans les problématiques environementales et énergétiques) : CM et TP (calcul de formules structurales)
- Résolution multi-techniques de cas d'étude en Géosciences : TP
- Notion de stabilité des minéraux par rapport à une eau naturelle exemple de la solubilité de la silice amorphe par sur- et soussaturation : CM et TP
- Prédiction et mesure expérimentale de la composition d'une eau naturelle en équilibre des roches carbonatées, application à la dissolution des calcaires en systèmes ouvert ou fermé : CM, TD et TP.

Compétences visées

Être autonome pour l'identification des minéraux et de leur stabilité.

Infos pratiques

Contacts

Responsable pédagogique

Dimitri Pret # +33 5 49 36 62 26 # dimitri.pret@univ-poitiers.fr

Lieu(x)

Poitiers-Campus