

Master Chimie

Niveau de diplôme Bac +5 ECTS 120 crédits Durée 2 ans

Composante
Sciences
Fondamentales
et Appliquées,
ENSIP : Ecole
nationale supérieure
d'ingénieurs
de Poitiers

Langue(s) d'enseignement Français, Anglais

Parcours proposés

- # Parcours Chimie analytique et qualité
- # Parcours Chimie organique pour le vivant
- # Parcours Qualité et traitement de l'eau
- # Parcours Chimie verte, catalyse et environnement
- # Parcours EUR chimie verte, catalyse et environnement
- # Parcours Erasmus Mundus Sustainable Catalysis (SUCAT)

(M1+M2 ou M2 seulement) soit en contrat d'apprentissage soit en contrat de professionnalisation ou une insertion différée après une poursuite d'études en Doctorat. Les emplois visés sont généralement des postes de responsables de procédés, responsable Recherche & Développement, responsable de laboratoire, responsable de département d'analyses ou chargé du management de la Qualité et H&S. Un Cursus Master en Ingénierie "chimie" est adossé à trois parcours (Chimie verte, Catalyse et Environnement /Qualité et Traitement de l'eau/Chimie Organique pour le Vivant).

Lien vers le département de Chimie : # https://sfa.univ-poitiers.fr/chimie/

Présentation

Le master *Chimie* prépare les étudiants à assurer des fonctions de cadres de niveau Bac+5 dans de nombreux domaines de la chimie (chimie verte, catalyse, (nano)-matériaux, chimie analytique, traitement de l'eau, synthèse organique) associés à des secteurs industriels importants (chimie durable, parapharmacie, environnement, énergies propres, matériaux, santé, procédés chimiques, agroalimentaire...). Cette diversité, qui se traduit dans les 5 parcours, permet de proposer une insertion professionnelle directe à l'issue du Master, facilitée par la possibilité pour les étudiants de réaliser leur Master en alternance

main

Objectifs

Former des cadres pour tous les secteurs de l'industrie chimique (tous les parcours) ou la gestion de la qualité (Parcours Chimie Analytique et Qualité)

Offrir aux étudiants une formation solide en chimie générale, inorganique, organique, analytique, industrielle,...

Doter les étudiants des outils professionnels nécessaires à la pratique de leur métier de cadre au niveau

- scientifiques dans le domaine d'expertise du parcours mais aussi en veille documentaire, qualité, analyse de risques en industrie, métrologie, plans d'expériences...
- techniques en appareillages d'analyses, droit de l'environnement, normes et réglementations...
- organisationnels en pilotage et gestion de projet, management...
- en communication (maîtrise de l'anglais, communication scientifique, rédaction de cahier des charges ou de rapports scientifiques, présentations orales, conduite de réunion, ...)
- en ouverture socio-économique (connaissances des enjeux industriels, connaissance de l'entreprise...)

Savoir-faire et compétences

Le savoir, le savoir-faire, le savoir-être ou le savoir-vivre ainsi que les compétences se déclinent sur deux niveaux :

- 1) les compétences générales pour le master chimie
- * Etre capable de réaliser et planifier un projet sur une durée imposée
- * Mettre en œuvre une expérimentation optimisée
- * Réaliser de la veille scientifique ou technologique
- * Appréhender les risques et utiliser les méthodes d'analyses de risques
- * Savoir communiquer, synthétiser
- * Savoir manager une équipe
- * Travailler en équipe ou en autonomie
- * Savoir s'adapter
- * Avoir de l'initiative
- * Etre responsable
- 2) les compétences spécifiques à un parcours

- * maîtriser la chimie analytique et la qualité
- * maîtriser les procédés de chimie durable (verte), de la catalyse, de la remédiation environnementale ou des énergies propres (à bas carbone)
- * maîtriser la synthèse organique de molécules chimiques ciblées pour le vivant
- * maîtriser la qualité et le traitement de l'eau
- * maîtriser la physico-chimie des matériaux et nanomatériaux

Les + de la formation

Possibilité de réaliser le master en alternance (M1+M2 ou M2 seulement) soit en contrat d'apprentissage soit en contrat de professionnalisation.

Dimension internationale

Possibilité de réaliser un semestre, une année ou seulement le stage à l'étranger en master

Organisation

Contrôle des connaissances

La formation est construite sur la base d'une pédagogie par objectifs sur l'appropriation des savoirs et l'acquisition de compétences. Ces objectifs sont vérifiés majoritairement sous forme de contrôle continu selon des procédures variées : contrôles écrits (résolution de problèmes, étude de documents), présentations orales, projets, contrôles pratiques, synthèses bibliographiques, rapports scientifiques, activités de mise en situation, ...

L'évaluation peut être réalisée par les pairs, les enseignantschercheurs ou les intervenants extérieurs industriels.

Ouvert en alternance

Type de contrat : Contrat d'apprentissage, Contrat de professionnalisation.

Selon le calendrier défini,

de sept à fev/mars : en moyenne 60% du temps en centre de formation et 40% en entreprise

de fev/mars à août : presque 100% du temps en entreprise

Le nombre d'alternants (essentiellement des apprentis) varie d'un parcours à un autre.

Consultez le parcours souhaité pour avoir plus d'informations.

Stages

Stage: Obligatoire

Durée du stage : 5 minimum à 11 mois possibles sur les deux années du master

Stage à l'étranger : Possible

Durée du stage à l'étranger : 7 à 11 mois sur les deux années du master

Outre les projets tutorés, les stages en M1 (1 mois minimum, 5 mois possibles) et en M2 (4 mois minimum, 6 mois possibles) peuvent être réalisés en entreprise, en laboratoire de recherche ou à l'étranger.

Admission

Conditions d'admission

Pour être admis en master, un étudiant doit

- 1- justifier soit d'un diplôme national conférant le grade de licence dans un domaine compatible avec celui du master demandé, soit d'une validation par équivalence.
- 2- être sélectionné sur dossier et entretien de motivation.

Tous les parcours de cette mention ont des capacités d'accueil limitées (10 à 24 étudiants selon les parcours)

Cette formation est également accessible aux adultes qui désirent reprendre des études (salariés, demandeurs d'emploi...) titulaires du diplôme requis ou bénéficiant d'une validation d'acquis (VAPP, VAE). # En savoir plus..

Candidater à l'entrée en première année :

- Candidater à l'entrée en première année sur le site # monmaster.gouv.fr
- Pour les candidats non européens dont le pays de résidence est couvert par le dispositif Études en France : consulter le # site Campus France.

Pour qui?

Tous les étudiants ayant un grade de Licence ou équivalent dans un domaine de la chimie souhaitant se former

- pour exercer un métier de cadre en industrie
- pour poursuivre des études en Doctorat

Et après

Poursuite d'études

Poursuite d'études possible en Doctorat pour devenir chercheur/enseignant chercheur ou cadre supérieur R&D dans l'industrie.

Poursuite d'études à l'étranger

Possibilité d'accéder à des études de Doctorat à l'étranger

Passerelles et réorientation

Les très rares demandes d'étudiants pour une réorientation au sein du master entre le M1 et le M2 (moins de 1% par an) sont examinées par les responsables de master. Le projet professionnel est étudié et une proposition personnalisée peut être faite ainsi qu' un aménagement adapté si nécessaire (possibilité de rattraper en M2 certaines UE spécifiques de M1).

Les demande de réorientation pour des accès à d'autres masters hors Poitiers sont inexistantes.

Insertion professionnelle

Les taux de placement des diplômés sont importants (41% en emploi à 6 mois, 82,6% à 18 mois et 91% à 30 mois selon l'enquête de l'établissement, , taux de répondants de 56% à 30 mois à 86% à 6 mois) pour moitié en Poitou-Charentes et pour moitié dans les autres régions.

Au niveau des emplois occupés, 86% des répondants à 30 mois déclarent que leur emploi correspond à leur niveau de formation, c'est-à-dire bac+5, contre 67% à 6 mois.

L'analyse de la situation à 6 mois montre que 41% des diplômés sont en emploi, 32% en poursuite d'études en Doctorat et 27% en recherche d'emploi.

L'ensemble de ces données chiffrées indiquent clairement que les débouchés à bac+5 permettent d'insérer largement nos diplômés, l'effectif de nos formations étant adapté au marché de l'emploi (Master chimie avec parcours à capacité limitée).

#Fiche insertion (Cette étude est menée auprès des diplômés 2019, 30 mois après l'obtention du diplôme)

Infos pratiques

Contacts

Responsable de la mention

Laurence Pirault Roy # +33 5 49 45 40 59

laurence.pirault@univ-poitiers.fr

Autres contacts

Prof Laurence Pirault-Roy, Responsable Master Chimie

UFR Sciences Fondamentales et Appliquées - Université de Poitiers

mail: # laurence.pirault@univ-poitiers.fr

adresse:

Institut de Chimie des Milieux et Matériaux de Poitiers IC2MP UMR 7285, B27, TSA 51106 4 rue Michel Brunet 86073 POITIERS CEDEX 9 France

Laboratoire(s) partenaire(s)

Institut de Chimie des Milieux et matériaux de Poitiers

http://ic2mp.labo.univ-poitiers.fr/

Lieu(x)

Poitiers-Campus

En savoir plus

Candidatures accès M1 : Vous devez faire acte de candidature sur la plateforme "Mon master" # https://www.monmaster.gouv.fr

Candidatures accès M2 : Vous devrez faire acte de candidature via l'application ecandidat en fonction du calendrier actualisé annuellement # https://ecandidat.appli.univ-poitiers.fr/ecandidat/

Dois-je candidater par Études en France ? (M1 ou M2) : toutes les informations sur la plateforme en fonction de votre situation

https://pastel.diplomatie.gouv.fr/etudesenfrance

Candidatures Campus France (M1 ou M2) : consulter le calendrier sur la plateforme

https://www.campusfrance.org/fr

Programme

Organisation

Le master est organisé en 4 semestres de 30 ECTS et comprend un stage court en M1 (1 mois minimum s) et long en M2 (4 mois minimum), ces stages pouvant être étendus à 6 mois/an. Ce stage peut être réalisé en entreprise, en laboratoire de recherche ou à l'étranger.

La formation possède un lien très fort avec le laboratoire d'adossement (Institut de Chimie des Milieux et Matériaux de Poitiers, 300 personnels) ce qui permet de développer de nombreuses collaborations internationales pour les stages à l'étranger ou de forts partenariats avec l'industrie.

L'enseignement est conçu pour permettre aux étudiants d'approfondir autant les aspects fondamentaux que les aspects appliqués et industriels, importants dans le domaine de la chimie. Les enseignements sont organisés pour développer l'autonomie des étudiants via des activités de mise en situation et de gestion de projet de recherche, pour faciliter leur insertion professionnelle (stages, alternance). Cette formation de haut niveau s'appuie sur une équipe d'enseignants chercheurs reconnus internationalement dans leurs domaines de compétences et d'intervenants industriels experts dans les compétences « métier ».

Mode full (title / type / CM / TD / TP / credits)

Parcours Chimie analytique et qualité

M1 Chimie analytique et qualité

	Nature	СМ	TD	TP	Crédits
Chromatographie-I	UE		24h	15h	3 crédits
Chromatographie-II	UE			20h	3 crédits
Techniques spectroscopiques-I	UE	6h	24h		3 crédits
Techniques spectroscopiques-II	UE	6h	10h	16h	3 crédits
Qualité et statistiques	UE	10h	21h	3h	6 crédits
Chimie du solide : analyse	UE	10h	14h	20h	6 crédits
Bonnes pratiques de laboratoire et connaissance de l'entreprise	UE	2h		12h	3 crédits
Anglais	UE		10h		3 crédits
Anglais contextualisé Anglais disciplinaire	EC EC		10h		

	Nature	CM	TD	TP	Crédits
Métrologie	UE	10h	24h	12h	6 crédits
Electrochimie analytique	UE	8h	14h	28h	6 crédits
Pratiques analytiques organiques	UE			25h	3 crédits
Analyse de l'eau, de l'air et du sol	UE	12h	16h	24h	6 crédits
Anglais	UE		10h		3 crédits
Anglais disciplinaire Anglais contextualisé-préparation d'échantillons	EC EC		10h		
Stage M1 CAQ	UE				6 crédits

M2 Chimie analytique et qualité

Semestre 3

	Nature	CM	TD	TP	Crédits
Matériaux et contacts	UE	14h	18h		3 crédits
Chimie et santé	UE	12h			3 crédits
Qualité	UE	14h	14h	3h	6 crédits
Méthodes d'analyses spécifiques	UE	20h	28h		6 crédits
Analyses de substances organiques : RMN et HRMS couplages Chromatographie/Masse et Spectroscopie	EC EC	10h 10h	16h 12h		
Anglais	UE		25h		3 crédits
Management et Gestion de projet	UE	12h	12h		3 crédits
Hygiène sécurité environnement	UE	12h	16h		6 crédits

Semestre 4

	Nature	CM	TD	TP	Crédits
Projet expérimental	UE			95h	6 crédits
Stage / mémoire de recherche	UE				24 crédits

Parcours Chimie organique pour le vivant

M1 Chimie organique pour le vivant

	Nature	CM	TD	TP	Crédits
Chromatographie-I	UE		24h	15h	3 crédits
Techniques spectroscopiques-I	UE	6h	24h		3 crédits
Catalyse homogène appliquée à la synthèse organique	UE	20h	20h	12h	6 crédits
Green Chemistry/Chimie verte	UE	28h	8h		6 crédits
Catalysis and eco-efficient processes/Catalyse et écoprocédés	UE	24h	16h		6 crédits
Heterogeneous Catalysis	EC	24h	16h		
Anglais professionnel	UE		20h		3 crédits
Anglais professionnel H&S	EC		12h		
Anglais professionnel CV et lettre de candidature	EC		8h		
Outils professionnels scientifiques Part-1	UE		8h		3 crédits

Semestre 2

	Nature	СМ	TD	TP	Crédits
Chimie théorique et modélisation en Sciences Moléculaires	UE	30h		20h	6 crédits
Groupements protecteurs et synthèses totales	UE	10h	17h		3 crédits
Hétérocycles et synthèse de médicaments	UE	10h	14h	30h	6 crédits
Chimie radicalaire et procédés photoredox	UE	10h	17h		3 crédits
Chimie organique des processus biologiques et chémobiologie	UE	10h	17h		3 crédits
Chimie organique des processus biologiques et chémobiologie	EC	10h	17h		
Organocatalyse et réactions péricycliques	UE	10h	18h		3 crédits
Anglais technique en chimie	UE				3 crédits
Stage	UE				3 crédits

M2 Chimie organique pour le vivant

	Nature	CM	TD	TP	Crédits
Modélisation en chimie organique	UE				3 crédits
Briques moléculaires du vivant : structure, réactivité et assemblage	UE	10h	17h		3 crédits
Le fluor en chimie organique	UE	10h	17h		3 crédits
Analyses de substances organiques : RMN et HRMS	UE	10h	16h		3 crédits
Analyses de substances organiques : RMN et HRMS	EC	10h	16h		

Synthèse asymétrique	UE	20h	30h	6 crédits
Développement de médicaments	UE	10h	17h	3 crédits
Initiation à la recherche	UE			3 crédits
Anglais scientifique & certification	UE		10h	3 crédits
Anglais disciplinaire & certification Anglais scientifique	EC EC		10h	
Outils professionnels scientifiques Part-II	UE	22h		3 crédits

	Nature	CM	TD	TP	Crédits
Outils professionnels scientifiques Part-III	UE	10h	14h		6 crédits
Stage / mémoire de recherche	UE				24 crédits

Parcours Qualité et traitement de l'eau

M1 Qualité et traitement de l'eau

Semestre 1

	Nature	СМ	TD	TP	Crédits
Chimie du solide : analyse	UE	10h	14h	20h	6 crédits
Chromatographie-I	UE		24h	15h	3 crédits
Chromatographie-II	UE			20h	3 crédits
Techniques spectroscopiques-I	UE	6h	24h		3 crédits
Techniques spectroscopiques-II	UE	6h	10h	16h	3 crédits
Chimie des eaux Part-I	UE	24h	26h		6 crédits
Outils professionnels scientifiques Part-1	UE		8h		3 crédits
Anglais	UE		8h		3 crédits
Anglais professionnel CV et lettre de candidature Anglais contextualisé	EC EC		8h		

	Nature	CM	וט	IP	Credits
Génie chimique	UE	10h		16h	3 crédits
Activation Electrochimique	UE	12h	8h	9h	3 crédits

Pratiques analytiques organiques	UE			25h	3 crédits
Analyse de l'eau, de l'air et du sol	UE	12h	16h	24h	6 crédits
Chimie des eaux Part-II	UE	24h	12h		6 crédits
Anglais technique en chimie	UE				3 crédits
Préparation d'échantillons	UE				3 crédits
Préparation d'échantillons : applications	EC				
Anglais contextualisé-préparation d'échantillons	EC				
Stage	UE				3 crédits

M2 Qualité et traitement de l'eau

Semestre 3

	Nature	CM	TD	TP	Crédits
Contaminants : Analyse et écotoxicologie	UE	20h	26h		6 crédits
Risques sanitaires et usages	UE	20h	26h		6 crédits
Traitements physico-chimiques	UE	20h	26h		6 crédits
Traitements biologiques	UE	20h	26h		6 crédits
Anglais scientifique & certification	UE		10h		3 crédits
Anglais disciplinaire & certification Anglais scientifique	EC EC		10h		
Outils professionnels scientifiques Part-II	UE	22h			3 crédits

Semestre 4

	Nature	CM	TD	TP	Crédits
Outils professionnels scientifiques Part-III	UE	10h	14h		6 crédits
Stage / mémoire de recherche	UE				24 crédits

Parcours Chimie verte, catalyse et environnement

M1 Chimie verte, catalyse et environnement

	Nature	СМ	TD	TP	Crédits
Chromatographie-I	UE		24h	15h	3 crédits

Techniques spectroscopiques-I	UE	6h	24h		3 crédits
Green Chemistry/Chimie verte	UE	28h	8h		6 crédits
Catalyse homogène appliquée à la synthèse organique	UE	20h	20h	12h	6 crédits
Catalysis and eco-efficient processes/Catalyse et écoprocédés	UE	24h	16h		6 crédits
Heterogeneous Catalysis	EC	24h	16h		
Anglais professionnel	UE		20h		3 crédits
Anglais professionnel H&S	EC		12h		
Anglais professionnel CV et lettre de candidature	EC		8h		
Outils professionnels scientifiques Part-1	UE		8h		3 crédits

	Nature	CM	TD	TP	Crédits
Chimie théorique et modélisation en Sciences Moléculaires	UE	30h		20h	6 crédits
Activation Electrochimique	UE	12h	8h	9h	3 crédits
Génie chimique	UE	10h		16h	3 crédits
Materials analysis/Analyse des Matériaux	UE	10h		16h	6 crédits
Inorganic Chemistry/Chimie inorganique	UE	18h	14h	14h	6 crédits
Anglais technique en chimie	UE				3 crédits
Stage	UE				3 crédits

M2 Chimie verte, catalyse et environnement

	Nature	СМ	TD	TP	Crédits
Solid-state analyses / Analyses spécifiques des solides	UE	28h	28h		6 crédits
Catalytic nanomaterials/Nanomatériaux catalytiques	UE	28h	28h		6 crédits
Environmental remediation/Remédiation environnementale	UE	14h	10h		3 crédits
Low or zero carbon energy/Energie bas carbone et énergie décarbonée	UE	16h	12h		3 crédits
Quantum modeling of materials and interfaces/Modélisation en chimie quantique de matériaux et interfaces	UE	20h		6h	3 crédits
Activated chemical processes/Procédés d'activation	UE	12h	10h		3 crédits
Anglais scientifique & certification	UE		10h		3 crédits
Anglais disciplinaire & certification Anglais scientifique	EC EC		10h		
Outils professionnels scientifiques Part-II	UE	22h			3 crédits

	Nature	CM	TD	TP	Crédits
Outils professionnels scientifiques Part-III	UE	10h	14h		6 crédits
Stage / mémoire de recherche	UE				24 crédits

Parcours EUR chimie verte, catalyse et environnement

M1 EUR chimie verte, catalyse et environnement

Semestre 1

	Nature	CM	TD	TP	Crédits
Common courses 1 EUR INTREE	UE	32h			3 crédits
Interaction rayonnement-matière	EC	8h			
Interaction électrons-matière	EC	8h			
Surface chemistry	EC	8h			
Outils numériques - programmation 1	EC	8h			
Research project	UE		10h		12 crédits
Soft skills 1 - EUR INTREE	UE				3 crédits
Anglais	EC		22h		
Scientific communication	EC	8h			
Green Chemistry/Chimie verte	UE	28h	8h		6 crédits
Catalysis and eco-efficient processes/Catalyse et écoprocédés	UE	24h	16h		6 crédits
Heterogeneous Catalysis	EC	24h	16h		

	Nature	CM	TD	TP	Crédits
Common courses 2 EUR INTREE	UE	32h			3 crédits
Electrical phenomena at interfaces	EC	8h			
Surfaces topography and its effect on interactions with fluids and solids	EC	8h			
Surface and interface design for heterogeneous catalysis	EC	8h			
Spectroscopy at interfaces	EC	8h			
Soft skills 2 - EUR INTREE	UE	8h	12h		3 crédits
Management	EC		12h		
Environmental impact	EC	8h			
Internship S2	UE				12 crédits
Inorganic Chemistry/Chimie inorganique	UE	18h	14h	14h	6 crédits

Materials analysis/Analyse des Matériaux

UE 1

10h

16h 6 crédits

M2 EUR chimie verte, catalyse et environnement

Semestre 3

	Nature	CM	TD	TP	Crédits
Common courses 3 EUR INTREE	UE	32h			3 crédits
Modélisation moléculaire	EC	8h			
Introduction to rheology	EC	8h			
Contact réseaux poreux	EC	8h			
Outils numériques - Programmation 2	EC	8h			
Soft skills 3 - EUR INTREE	UE	8h	22h		3 crédits
Anglais	EC		22h		
Soft skills 3	EC	8h			
Practicum	UE		10h		6 crédits
Practicum - EC	EC		10h		
Catalytic nanomaterials/Nanomatériaux catalytiques	UE	28h	28h		6 crédits
Activated chemical processes/Procédés d'activation	UE	12h	10h		3 crédits
Environmental remediation/Remédiation environnementale	UE	14h	10h		3 crédits
Low or zero carbon energy/Energie bas carbone et énergie décarbonée	UE	16h	12h		3 crédits
Quantum modeling of materials and interfaces/Modélisation en chimie quantique de matériaux et interfaces	UE	20h		6h	3 crédits

Semestre 4

	Nature	CM	TD	TP	Crédits
Internship S4	UE				30 crédits

Parcours Erasmus Mundus Sustainable Catalysis (SUCAT)

M1 Parcours Erasmus Mundus Sustainable Catalysis (SUCAT)

	Nature	CM	TD	TP	Crédits
Green Chemistry/Chimie verte	UE	28h	8h		6 crédits
Homogeneous catalysis	UE	15h	25h		5 crédits

S2 Internship	UE				30 crédits
	Nature	СМ	TD	TP	Crédits
Semestre 2					
Techniques spectroscopiques-I	UE	6h	24h		3 crédits
Chromatographie-I	UE		24h	15h	3 crédits
Analytical tools	BLOC				6 crédits
Heterogeneous Catalysis	EC	24h	16h		
Heterogeneous catalysis and eco-efficient processes	UE	24h	16h		5 crédits
Life cycle assessment	UE				3 crédits
Microbial and enzymatic catalysis	UE	15h	25h		5 crédits

M2 Parcours Erasmus Mundus Sustainable Catalysis (SUCAT)

Semestre 3

	Nature	CM	TD	TP	Crédits
Catalytic nanomaterials/Nanomatériaux catalytiques	UE	28h	28h		6 crédits
Solid-state analyses / Analyses spécifiques des solides	UE	28h	28h		6 crédits
Activated chemical processes/Procédés d'activation	UE	12h	10h		3 crédits
Environmental remediation/Remédiation environnementale	UE	14h	10h		3 crédits
Quantum modeling of materials and interfaces/Modélisation en chimie quantique de matériaux et interfaces	UE	20h		6h	3 crédits
Low or zero carbon energy/Energie bas carbone et énergie décarbonée	UE	16h	12h		3 crédits
Company management and bibliography on heterogeneous catalysis	UE				6 crédits

Semestre 4

	Nature	CM	TD	TP	Crédits	
Master Thesis	UE				30 crédits	

UE = Unité d'enseignement

EC = Élément Constitutif