

Master Energie

Niveau de diplôme Bac +5 ECTS 120 crédits Durée 2 ans

Composante
Sciences Fondamentales
et Appliquées, ENSIP:
Ecole nationale supérieure
d'ingénieurs de Poitiers

Parcours proposés

- # Parcours Gestion de l'énergie
- # Parcours Automatique et énergie électrique
- # Parcours EUR Énergie, fluides et interfaces

Présentation

Le master « Energie » a pour objectif de former des spécialistes dans le domaine de la gestion de l'énergie et des énergies renouvelables (EnR).

A l'issu de la formation, les étudiants formés travaillent comme ingénieurs ou chercheurs dans le domaine de l'énergie. Ils sont capables de concevoir et d'optimiser des systèmes de production, de transport et de conversion de l'énergie, dans un objectif d'efficacité énergétique et de développement durable.

Le M2 du parcours "Gestion de l'Energie" peut être effectué en alternance, mais cela n'est pas obligatoire.

main

Objectifs

Le master comporte trois parcours. Le premier parcours, intitulé "Gestion de l'Energie" (GE), est généraliste ; son objectif est que les étudiants acquièrent des compétences fondamentales et technologiques multidisciplinaires dans les différents domaines liés à la production et la gestion de l'énergie (génie électrique, systèmes hydrauliques et thermiques), de façon à être capables d'optimiser des systèmes de production et de transport de l'énergie et de réaliser des bilans énergétiques, dans un objectif de développement durable. L'objectif du second parcours intitulé "Automatique et Energie Electrique" (AEE) est plus ciblé ; il est de former des étudiants qui travailleront dans les domaines de l'automatique et de l'énergie électrique, avec des compétences particulières en modélisation, identification et contrôle-commande des systèmes. Enfin, le troisième parcours intitulé "Energy, Fluids and Interfaces" (EFI), est dédié à la recherche scientifique sur les phénomènes de transfert d'énergie et de masse aux interfaces.

Savoir-faire et compétences

Cette formation multidisciplinaire en sciences pour l'ingénieur comporte une approche théorique permettant la compréhension des phénomènes physiques nécessaires aux ingénieurs et une approche technologique décrivant le fonctionnement des systèmes industriels. A l'issue de la formation, les étudiants formés travaillent comme ingénieurs ou chercheurs dans le domaine de l'énergie. Ils sont capables de concevoir et d'optimiser des systèmes de production et de transport de l'énergie, de rendre plus efficace

les systèmes énergétiques, de réaliser des bilans et diagnostics énergétiques et de dimensionner des systèmes de production d'énergie renouvelable, dans un objectif de développement durable.

- mes f de •
 - Pour les candidats non européens dont le pays de résidence est couvert par le dispositif Études en France : consulter le # site Campus France.

• Candidater à l'entrée en première année sur le site #

Organisation

Ouvert en alternance

Type de contrat : Contrat de professionnalisation.

La deuxième année (M2) du parcours "Gestion de l'énergie " est ouvert à l'alternance sous contrats de professionnalisation.

Stages

Stage: Obligatoire

Durée du stage : stage de 4 mois minimum sur une

période de mars à septembre

Stage à l'étranger : Possible

Durée du stage à l'étranger : 4 mois minimum

Admission

Conditions d'admission

Licence relevant des Sciences pour l'Ingénieur (énergétique, thermique, mécanique, électronique, physique)

Cette formation est également accessible aux adultes qui désirent reprendre des études (salariés, demandeurs d'emploi...) titulaires du diplôme requis ou bénéficiant d'une validation d'acquis (VAPP, VAE). # En savoir plus..

Et après

monmaster.gouv.fr

Poursuite d'études

Possibilité de poursuivre ses études en thèse de Doctorat

Insertion professionnelle

Les métiers visés sont l'ensemble des métiers dans le domaine de l'énergie, de sa production à sa consommation. Les étudiants formés sont embauchés par des PME ou des grands groupes pour travailler comme ingénieurs dans :

- la production d'énergie (électrique, thermique, mécanique) et les énergies renouvelables (solaire, éolien, hydraulique, chimique)
- le transport de l'énergie électrique
- le dimensionnement de machines électriques, hydrauliques et thermiques
- l'optimisation énergétique de systèmes industriels
- le contrôle et la commande de systèmes industriels, et la gestion de smart grids

Fiche insertion (Cette étude est menée auprès des diplômés 2019, 30 mois après l'obtention du diplôme)

Infos pratiques

Contacts

Responsable de la mention

Eric Moreau

+33 5 49 49 69 33

eric.moreau@univ-poitiers.fr

Autres contacts

Parcours "Gestion de l'Energie" :

Nicolas BENARD: # nicolas.benard@univ-poitiers.fr

Paul LEBLANC: # paul.leblanc@univ-poitiers.fr

Parcours "Automatique et Energie Electrique" :

Nima YEGANEFAR: # nima.yeganefar@univ-poitiers.fr

Laboratoire(s) partenaire(s)

Institut PPRIME, LIAS

https://www.pprime.fr, https://www.lias-lab.fr

Lieu(x)

Futuroscope

En savoir plus

Candidatures accès M1 : Vous devez faire acte de candidature sur la plateforme "Mon master" # https://www.monmaster.gouv.fr

Candidatures accès M2 : Vous devrez faire acte de candidature via l'application ecandidat en fonction du calendrier actualisé annuellement # https://ecandidat.appli.univ-poitiers.fr/ecandidat/

Dois-je candidater par Études en France ? (M1 ou M2) : toutes les informations sur la plateforme en fonction de votre situation

https://pastel.diplomatie.gouv.fr/etudesenfrance

Candidatures Campus France (M1 ou M2) : consulter le calendrier sur la plateforme

https://www.campusfrance.org/fr

Programme

Organisation

Les enseignements ont lieu sous la forme de CM, TD, TP et APP (Autres Pratiques Pédagogiques). Les APP font appel à la formation à distance, à l'utilisation de tutoriels vidéos pour que l'étudiant puisse travailler en autonomie, et à la pédagogie inversée (à un degré plus ou moins important dans l'ensemble des UE scientifiques). Elles viennent en complément aux CM, TD et TP, ainsi qu'aux bureaux d'études et projets. L'objectif de ces nouvelles méthodes pédagogiques est de pousser l'étudiant à réfléchir et à se poser plus de questions, pour qu'il devienne plus autonome.

Mode full (title / type / CM / TD / TP / credits)

Parcours Gestion de l'énergie

M1 Gestion de l'énergie

Semestre 1

	Nature	CM	TD	TP	Crédits
ns et diagnostics énergétiques 1	UE				3 crédits
rces d'énergie et dévelopement durable	UE	14h	16h	16h	3 crédits
ergie électrique	UE	14h	16h	16h	6 crédits
namique des fluides réels	UE	14h	16h	16h	6 crédits
nsferts thermiques	UE	14h	16h	16h	6 crédits
glais I	UE		24h		3 crédits
professionnelle 1	UE	12h	12h	12h	3 crédits
rces d'énergie et dévelopement durable ergie électrique namique des fluides réels nsferts thermiques	UE UE UE UE UE	14h 14h 14h	16h 16h 16h 24h	16h 16h 16h	3 crédits 6 crédits 6 crédits 6 crédits 3 crédits

	Nature	CM	TD	TP	Crédits
Bilans et diagnostics énergétiques 2	UE				3 crédits
Systèmes électriques pour les EnR	UE	14h	16h	16h	6 crédits
Machines hydrauliques et thermiques	UE	14h	16h	16h	3 crédits
Capteurs et instrumentation	UE	8h	14h	24h	6 crédits
Simulation numérique multiphysique 1	UE	2h		36h	6 crédits

Anglais II	UE		16h		3 crédits
Vie Professionnelle 2	UE	2h	12h	14h	3 crédits

M2 Gestion de l'énergie

Semestre 3

	Nature	CM	TD	TP	Crédits
Bilans et diagnostics énergétiques 3	UE				3 crédits
Simulation numérique multiphysique 2	UE	10h	10h	32h	3 crédits
Techniques expérimentales multiphysiques	UE	16h	4h	48h	6 crédits
Fiabilité électrique	UE	20h	16h	16h	6 crédits
Turbulence et écoulements naturels	UE	20h	14h	12h	6 crédits
Anglais III	UE		25h		3 crédits
Entreprise et innovation	UE		16h	16h	3 crédits
Semestre 4					
	Moturo	CM	TD	TD	Crádita

	Nature	CM	TD	TP	Crédits
Gestion de projet GE	UE				6 crédits
Stage / Mémoire de recherche	UE				24 crédits

Parcours Automatique et énergie électrique

M1 Automatique et énergie électrique

	Nature	CM	TD	TP	Crédits
Bilans et diagnostics énergétiques 1	UE				3 crédits
Sources d'énergie et dévelopement durable	UE	14h	16h	16h	3 crédits
Energie électrique	UE	14h	16h	16h	6 crédits
Dynamique des fluides réels	UE	14h	16h	16h	6 crédits
Transferts thermiques	UE	14h	16h	16h	6 crédits
Anglais I	UE		24h		3 crédits
Vie professionnelle 1	UE	12h	12h	12h	3 crédits

Semestre 2

	Nature	СМ	TD	TP	Crédits
Bilans et diagnostics énergétiques 2	UE				3 crédits
Systèmes électriques pour les EnR	UE	14h	16h	16h	6 crédits
Capteurs et instrumentation	UE	8h	14h	24h	6 crédits
Régulation de systèmes et stabilité	UE		46h		6 crédits
Identification et représentation d'état	UE	24h	18h		3 crédits
Anglais II	UE		16h		3 crédits
Vie Professionnelle 2	UE	2h	12h	14h	3 crédits

M2 Automatique et énergie électrique

Semestre 3

	Nature	CM	TD	TP	Crédits
Electrotechnique II	UE	37,5h	30h	8h	6 crédits
Identification et méthode de commande II	UE	34,5h	28,5h		6 crédits
Commande avancée	UE		48h	16h	6 crédits
Gestion et qualité de l'énergie électrique	UE	19,5h	12h	4h	6 crédits
Anglais	UE		32h		3 crédits
Vie de l'entreprise	UE		32h		3 crédits
Samestra 1					

Semestre 4

	Nature	CM	TD	TP	Crédits
Gestion de projet A2E	UE		20h		6 crédits
Stage / Mémoire de recherche	UE				24 crédits

Parcours EUR Énergie, fluides et interfaces

M1 EUR Énergie, fluides et interfaces

	Nature	СМ	TD	TP	Crédits
Transferts thermiques	UE	14h	16h	16h	6 crédits

Dynamique des fluides réels	UE	14h	16h	16h	6 crédits
Common courses 1 EUR INTREE	UE	32h			3 crédits
Interaction rayonnement-matière	EC	8h			
Interaction électrons-matière	EC	8h			
Surface chemistry	EC	8h			
Outils numériques - programmation 1	EC	8h			
Soft skills 1 - EUR INTREE	UE				3 crédits
Anglais	EC		22h		
Scientific communication	EC	8h			
Research project	UE		10h		12 crédits

Semestre 2

	Nature	CM	TD	TP	Crédits
Common courses 2 EUR INTREE	UE	32h			3 crédits
Electrical phenomena at interfaces	EC	8h			
Surfaces topography and its effect on interactions with fluids and solids	EC	8h			
Surface and interface design for heterogeneous catalysis	EC	8h			
Spectroscopy at interfaces	EC	8h			
Soft skills 2 - EUR INTREE	UE	8h	12h		3 crédits
Management	EC		12h		
Environmental impact	EC	8h			
Internship S2	UE				12 crédits
Capteurs et instrumentation	UE	8h	14h	24h	6 crédits
Simulation numérique multiphysique 1	UE	2h		36h	6 crédits

M2 EUR Énergie, fluides et interfaces

	Nature	CM	TD	TP	Crédits
Fiabilité électrique	UE	20h	16h	16h	6 crédits
Techniques expérimentales multiphysiques	UE	16h	4h	48h	6 crédits
Turbulence et écoulements naturels	UE	20h	14h	12h	6 crédits
Common courses 3 EUR INTREE	UE	32h			3 crédits
Modélisation moléculaire	EC	8h			
Introduction to rheology	EC	8h			
Contact réseaux poreux	EC	8h			
Outils numériques - Programmation 2	EC	8h			
Soft skills 3 - EUR INTREE	UE	8h	22h		3 crédits

Anglais Soft skills 3	EC EC	8h	22h	
Practicum	UE		10h	6 crédits
Practicum - EC	EC		10h	

Semestre 4

	Nature	СМ	TD	TP	Crédits
Internship S4	UE				30 crédits

UE = Unité d'enseignement

EC = Élément Constitutif