

MASTER CHIMIE

Parcours Chimie organique pour le vivant

Niveau de diplôme Bac +5 ECTS 120 crédits Durée 2 ans

Composante
Sciences Fondamentales
et Appliquées

Présentation

Le master Chimie se décline en six parcours : Qualité et traitement de l'eau, Chimie analytique et qualité, Chimie verte, catalyse et environnement, 2 parcours internationaux : EUR INTREE et Eramus Mundus Sustainable Catalysis, et enfin Chimie organique pour le vivant, Ce dernier parcours de master forme des chimistes organiciens spécialisés dans la conception de molécules dédiées à l'exploration, la manipulation et le mime du vivant. Les diplômés deviendront des responsables de procédés, responsables Recherche & Développement ou responsables de laboratoire, dans les domaines de la chimie en lien avec le vivant (médicaments, cosmétiques, alimentation, agriculture, environnement...).

Objectifs

L'objectif est de former des cadres de niveau bac +5 en recherche et développement dans le domaine de la chimie organique appliquée à l'exploration, la manipulation et le mime du vivant. Cette formation est parfaitement adaptée à l'évolution de nombreux secteurs de l'industrie chimique en lien avec le vivant (pharmacie, parapharmacie, agrochimie, agroalimentaire, chimie durable...).

Savoir-faire et compétences

Les compétences spécifiques au parcours « Chimie Organique pour le Vivant » :

- maîtriser les grandes réactions de la chimie organique
- maîtriser la synthèse multi-étape de molécules complexes
- maîtriser la caractérisation et l'analyse de molécules complexes
- maîtriser les mécanismes des processus biologiques à l'échelle moléculaire
- maîtriser la conception de molécules dédiées à l'exploration et la manipulation du vivant.
- maîtriser la conception de systèmes moléculaires mimant les processus du vivant

Dimension internationale

L'Université de Poitiers a des accords de coopération dans le domaine de la chimie avec de nombreuses institutions européennes (programme ERASMUS+) et des partenariats avec bien d'autres structures internationales notamment en Amérique du Nord. De plus, l'Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), reconnu internationalement, dispose de nombreuses collaborations et contacts à la fois en France mais aussi à l'international. Les stages à l'étranger en laboratoire ou en entreprise sont fortement conseillés notamment en M1. Un dispositif d'aide financière à la mobilité internationale a été mis en place pour les stages de plus de 2 mois.

Dans ce cadre entre 30 et 50% des étudiants du master 1 effectuent leur stage à l'étranger.

Mobilité entrante : entre 10 et 30 % des étudiants du Master viennent de l'étranger.

Mobilité sortante : de façon ponctuelle des étudiants effectuent un semestre (en général en M1) à l'étranger dans le cadre d'ERASMUS.+

Organisation

Contrôle des connaissances

La formation est construite sur la base d'une pédagogie par objectifs sur l'appropriation des savoirs et l'acquisition de compétences. Ces objectifs sont vérifiés majoritairement sous forme de contrôle continu selon des procédures variées : contrôles écrits (résolution de problèmes, étude de documents), présentations orales, projets, contrôles pratiques, synthèses bibliographiques, rapports scientifiques, activités de mise en situation, ...

L'évaluation peut être réalisée par les pairs, les enseignantschercheurs ou les intervenants extérieurs industriels.

Ouvert en alternance

Type de contrat : Contrat d'apprentissage, Contrat de professionnalisation.

L'alternance peut être réalisée sur les deux années du master ou seulement la deuxième année . La répartition du temps entre entreprise et centre de formation suit un calendrier défini :

De septembre à février : 60 % du temps en centre de formation et 40 % en entreprise

De mars à Août : 100 % du temps en entreprise

Stages

Stage: Obligatoire

Durée du stage : 5 mois minimum (1 mois en M1 + 4 mois

en M2) à 11 mois possibles

Stage à l'étranger : Possible

Durée du stage à l'étranger : 5 mois minimum (1 mois en

M1 + 4 mois en M2) à 11 mois possibles

Admission

Conditions d'admission

Pour être admis en master, un étudiant doit

- 1- justifier soit d'un diplôme national conférant le grade de licence dans un domaine compatible avec celui du master demandé, soit d'une validation par équivalence.
- 2- être sélectionné sur dossier (admissibilité) puis entretien (admission)

Parcours à capacité d'accueil limitée: 16 étudiants à l'entrée du M1

- Candidater à l'entrée en première année pour la rentrée 2025 :
 - Candidatures du du 25 février au 24 mars 2025 sur le site # monmaster.gouv.fr (accès au site à compter du 3 février 2025 - # calendrier)
 - Pour les candidats non européens dont le pays de résidence est couvert par le dispositif Études en France : consulter le # site Campus France (campagne de candidature du 1/10/2025 au 23/12/2025).

Cette formation est également accessible aux adultes qui désirent reprendre des études (salariés, demandeurs d'emploi...) titulaires du diplôme requis ou bénéficiant d'une validation d'acquis (VAPP, VAE). # En savoir plus..

Pour qui?

Les étudiants ayant un grade de licence ou équivalent en Chimie et souhaitant se former pour :

- exercer un métier de cadre dans l'industrie
- poursuivre des études en doctorat dans le domaine de la chimie organique

Pré-requis recommandés

connaissances solides en chimie organique

Et après

Poursuite d'études

A la suite du master, les étudiants peuvent choisir de poursuivre des études en Doctorat de chimie. Pour ce master, plus de la moitié des diplômés poursuivent leurs études en doctorat.

Poursuite d'études à l'étranger

Possibilité d'accéder à des études de Doctorat à l'étranger.

Passerelles et réorientation

Les très rares demandes d'étudiants pour une réorientation au sein du master entre le M1 et le M2 (moins de 1% par an) sont examinées par les responsables du master. Le projet professionnel est étudié et une proposition personnalisée peut être faite ainsi qu'un aménagement adapté si nécessaire (possibilité de rattraper en M2 certaines UE spécifiques de M1).

Les demandes de réorientation pour des accès à d'autres masters hors Poitiers sont inexistantes.

Insertion professionnelle

Les taux de placement des diplômés sont de 40 à 50% en poursuite d'études en doctorat, 30% à 40% en emploi professionnel à 6 mois, moins de 20% en poursuite d'étude (ex autre master de spécialité complémentaires ou différente) selon l'enquête de l'équipe de pilotage.

Au niveau des emplois occupés, 86% des répondants à 30 mois déclarent que leur emploi correspond à leur niveau de formation, c'est-à-dire bac+5, contre 67% à 6 mois.

L'ensemble de ces données chiffrées indiquent clairement que les débouchés à bac+5 permettent d'insérer largement nos diplômés, l'effectif de nos formations étant adapté au marché de l'emploi (Master chimie avec parcours à capacité limitée).

Infos pratiques

Laboratoire(s) partenaire(s)

Institut de Chimie des Milieux et Matériaux de Poitiers, IC2MP UMR CNRS 7285

http://ic2mp.labo.univ-poitiers.fr/

Lieu(x)

Poitiers-Campus

En savoir plus

Pour en savoir plus

https://sfa.univ-poitiers.fr/chimie/

Candidatures accès M1 : Vous devez faire acte de candidature sur la plateforme "Mon master" # https://www.monmaster.gouv.fr

Candidatures accès M2 : Vous devrez faire acte de candidature via l'application ecandidat en fonction du calendrier actualisé annuellement # https://ecandidat.appli.univ-poitiers.fr/ecandidat/

Dois-je candidater par Études en France ? (M1 ou M2) : toutes les informations sur la plateforme en fonction de votre situation

https://pastel.diplomatie.gouv.fr/etudesenfrance

Candidatures Campus France (M1 ou M2) : consulter le calendrier sur la plateforme

https://www.campusfrance.org/fr

Programme

Organisation

Le master est organisé en 4 semestres de 30 ECTS et comprend un stage court en M1 (1 à 5 mois (3 mois conseillés)) et long en M2 (4 mois minimum à 6 mois possibles). Ces stages sont réalisés de préférence en entreprise et peuvent être effectués à l'étranger. Le master peut également être réalisé en alternance soit sur les deux années, soit seulement sur la deuxième année (contrat de professionnalisation ou d'apprentissage).

L'enseignement est conçu pour permettre aux étudiants d'approfondir autant les aspects fondamentaux et théoriques en sciences analytiques et qualité que les aspects technologiques et appliqués. Les enseignements sont organisés pour développer l'autonomie des étudiants *via*, en plus des cours, travaux dirigés et travaux pratiques classiques, des activités de mise en situation (gestion de projet, étude de cas) et ainsi faciliter leur insertion professionnelle. Cette formation s'appuie sur une équipe d'enseignants chercheurs reconnus internationalement et d'intervenants industriels experts choisis pour leurs compétences spécifiques.

Mode full (title / type / CM / TD / TP / credits)

M1 Chimie organique pour le vivant

Semestre 1

	Nature	CM	TD	TP	Crédits
Chromatographie-I	UE		24h	15h	3 crédits
Techniques spectroscopiques-I	UE	6h	24h		3 crédits
Catalyse homogène appliquée à la synthèse organique	UE	20h	20h	12h	6 crédits
Green Chemistry/Chimie verte	UE	28h	8h		6 crédits
Catalysis and eco-efficient processes/Catalyse et écoprocédés	UE	24h	16h		6 crédits
Heterogeneous Catalysis	EC	24h	16h		
Anglais professionnel	UE		20h		3 crédits
Anglais professionnel H&S	EC		12h		
Anglais professionnel CV et lettre de candidature	EC		8h		
Outils professionnels scientifiques Part-1	UE		8h		3 crédits

Semestre 2

	Nature	CM	TD	TP	Crédits
Chimie théorique et modélisation en Sciences Moléculaires	UE	30h		20h	6 crédits
Groupements protecteurs et synthèses totales	UE	10h	17h		3 crédits

Hétérocycles et synthèse de médicaments	UE	10h	14h	30h	6 crédits
Chimie radicalaire et procédés photoredox	UE	10h	17h		3 crédits
Chimie organique des processus biologiques et chémobiologie	UE	10h	17h		3 crédits
Chimie organique des processus biologiques et chémobiologie	EC	10h	17h		
Organocatalyse et réactions péricycliques	UE	10h	18h		3 crédits
Anglais technique en chimie	UE				3 crédits
Stage	UE				3 crédits

M2 Chimie organique pour le vivant

Semestre 3

	Nature	CM	TD	TP	Crédits
Modélisation en chimie organique	UE				3 crédits
Briques moléculaires du vivant : structure, réactivité et assemblage	UE	10h	17h		3 crédits
Le fluor en chimie organique	UE	10h	17h		3 crédits
Analyses de substances organiques : RMN et HRMS	UE	10h	16h		3 crédits
Analyses de substances organiques : RMN et HRMS	EC	10h	16h		
Synthèse asymétrique	UE	20h	30h		6 crédits
Développement de médicaments	UE	10h	17h		3 crédits
Initiation à la recherche	UE				3 crédits
Anglais scientifique & certification	UE		10h		3 crédits
Anglais disciplinaire & certification	EC		10h		
Anglais scientifique	EC				
Outils professionnels scientifiques Part-II	UE	22h			3 crédits

Semestre 4

	Nature	СМ	TD	TP	Crédits
Outils professionnels scientifiques Part-III	UE	10h	14h		6 crédits
Stage / mémoire de recherche	UE				24 crédits

UE = Unité d'enseignement

EC = Élément Constitutif